ANALYSIS OF SEVERAL VARIABLES MIDTERM EXAMINATION

Total marks: 50
Attempt all questions. If you are using a theorem done in class in your answer, please quote it in full.

Time: 3 hours
(1) Give an example of a function all of whose directional derivatives at a point exist and are zero, but the function is not continuous at that point. (8 marks)
(2) Suppose a hillside is given by $z=f(x, y)=\frac{40}{4+x^{2}+3 y^{2}}$, where $(x, y) \in$ $U \subset \mathbb{R}^{2}(z=f(x, y)$ is the height at the point $(x, y))$. Find a vector tangent to the curve of steepest ascent on the hill at the point ($1,1,5$). (10 marks)
(3) Consider the function $f(x, y)=2 x^{4}-3 x^{2} y+y^{2}$. Show that the origin is a critical point of f and that, restricting f to any line through the origin, the origin is a local minimum point. Is the origin a local minimum point of $f ?(5+5=10$ marks $)$
(4) What is the smallest number A such that any two squares S_{1} and S_{2} of total area 1 (unit) can be put disjointly into a rectangle of area A (units)? The two squares can be put disjointly means their interiors do not intersect. (10 marks)
(5) Let $O(n)$ be the subset $\left\{A \in M_{n}(\mathbb{R}) \mid A^{T} A=I_{n}\right\}$ of $\mathbb{R}^{n^{2}}$. Show that $O(n)$ is a compact subset of $\mathbb{R}^{n^{2}}$. Prove that $O(n)$ is a smooth manifold and find the dimension of $O(n) \cdot(2+10=12$ marks $)$

